3-bounded Property in a Triangle-free Distance-regular Graph

نویسندگان

  • Yeh-jong Pan
  • Chih-wen Weng
چکیده

Let Γ denote a distance-regular graph with classical parameters (D, b, α, β) and D ≥ 3. Assume the intersection numbers a1 = 0 and a2 6= 0. We show Γ is 3-bounded in the sense of the article [D-bounded distance-regular graphs, European Journal of Combinatorics(1997)18, 211-229].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 70 9 . 05 64 v 1 [ m at h . C O ] 5 S ep 2 00 7 3 - bounded Property in a Triangle - free Distance - regular Graph ∗

Let Γ denote a distance-regular graph with classical parameters (D, b, α, β) and D ≥ 3. Assume the intersection numbers a1 = 0 and a2 6= 0. We show Γ is 3-bounded in the sense of the article [D-bounded distance-regular graphs, European Journal of Combinatorics(1997)18, 211-229].

متن کامل

Completeness in Probabilistic Metric Spaces

The idea of probabilistic metric space was introduced by Menger and he showed that probabilistic metric spaces are generalizations of metric spaces. Thus, in this paper, we prove some of the important features and theorems and conclusions that are found in metric spaces. At the beginning of this paper, the distance distribution functions are proposed. These functions are essential in defining p...

متن کامل

There are Finitely Many Triangle-Free Distance-Regular Graphs with Degree 8, 9 or 10

In this paper we prove that there are finitely many triangle-free distance-regular graphs with degree 8, 9 or 10.

متن کامل

D - bounded Property in a Distance - regular Graph with a 1 = 0 and a 2 6 = 0

Let Γ denote a distance-regular graph with diameter D and intersection numbers a2 > a1 = 0. We show that for each 1 ≤ d ≤ D−1, if Γ contains no parallelograms of lengths up to d+1 then Γ is d-bounded in the sense of the article [D-bounded distance-regular graphs, European Journal of Combinatorics(1997)18, 211-229]. By applying this result we show the nonexistence of distance-regular graphs with...

متن کامل

On triangle-free distance-regular graphs with an eigenvalue multiplicity equal to the valency

Let Γ be a triangle-free distance-regular graph with diameter d ≥ 3, valency k ≥ 3 and intersection number a2 6= 0. Assume Γ has an eigenvalue with multiplicity k. We show that Γ is 1-homogeneous in the sense of Nomura when d = 3 or when d ≥ 4 and a4 = 0. In the latter case we prove that Γ is an antipodal cover of a strongly regular graph, which means that it has diameter 4 or 5. For d = 5 the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2008